If it's not what You are looking for type in the equation solver your own equation and let us solve it.
48x^2+48x-72=0
a = 48; b = 48; c = -72;
Δ = b2-4ac
Δ = 482-4·48·(-72)
Δ = 16128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16128}=\sqrt{2304*7}=\sqrt{2304}*\sqrt{7}=48\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-48\sqrt{7}}{2*48}=\frac{-48-48\sqrt{7}}{96} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+48\sqrt{7}}{2*48}=\frac{-48+48\sqrt{7}}{96} $
| 2a+a+3a+4a=360 | | 17x+3+4x+29=0 | | 3X+2y=32.25 | | 12=3/4u | | 4(2)^(4−1)=x | | 7x-3=2(x=^0 | | -x+18=-2 | | 9x^2+3x+18=0 | | 11+x÷2(6)=154 | | 3y-5+2(7-2y)=17 | | 2(7x+-9)=136 | | -x+8=-6 | | 11+x/2(6)=154 | | -6x+9=-24 | | 3x2+3x=0 | | 3x2-3x=0 | | 9•3^x-5=15 | | m/6+15=21 | | x(.07)=300 | | 4x+3x+4+2x+5=180 | | 7p-3=33 | | 2=x+-7 | | y-12=77 | | 7⁄8·n=35 | | 8-4/3a=7 | | -13x+7x=-42 | | 0=-5v^2-17v-12 | | y-12=46 | | -x^2+4x-1=x^2-4x+5 | | 9x+6=4x+1 | | -2(z-8)=22 | | 7b-5=2b-0.5 |